A Getting-It-On Review and Self-Test
Periodic Arrangement of the Elements

Placing the electron in a systematic diagram according to energies is called an _______ ______ ______. Thus, electrons occupying the highest energy levels with the same principal quantum number are the _______ ______ ______. The element’s chemical properties are primarily a function of the ______ binding these electrons to the ______. The force of attraction has the general expression _________. Increasing the distance between the charges ______ the force. Increasing the magnitude of charge ______ the force.

The periodic table is ordered according to ______ ______. The metals are located on the _______ and the non-metals on the _______ of the table. Columns are called ________ and rows are called _________. The A family element’s outer levels are _______ and _______. The B family element’s outer levels are the _______. The atomic radius _________ with increasing atomic number in a family and ______ with increasing atomic number in a period. Within a family, the ionization energy ________ with increasing atomic number. Within a period, the ionization energy ________ with increasing atomic number. Metals tend to form _______ and non-metals tend to form _______.

1. Draw the electron dot symbols for the elements below:
 sulfur, barium, phosphorus, potassium, iodine, argon, oxygen

2. Give the charges on the monatomic ions of question #1 above.

3. Give three examples of:
 a. inert gases
 b. alkali metals
 c. halogens
 d. alkaline-earth metals

4. Using spectroscopic notation, give the electronic configuration of the first member of the following families:
 IA, IIA, IIIA, IVA, VA, VIA, VIIA
ANSWERS

energy level diagram outer level electron forces

nucleus \(F = \frac{q^+ q^-}{r^2} \) reduces increases

atomic number left right families periods
s p d increases decreases
decreases increases cations anions

1. \(\text{S} \) \(\text{Ba}^+ \) \(\text{P}^- \) \(\text{K}^+ \)
 \(\text{I}^- \) \(\text{Ar}^{3+} \) \(\text{O}^2^- \)

2. \(S^- \) \(\text{Ba}^{+2} \) \(P^{-3} \) \(K^+ \) \(I^- \) \(\text{Ar}^0 \)
 \(O^{2-} \)

3. examples:
 a. He, Ne, Ar
 b. Li, Na, K
 c. F, Cl, Br
 d. Mg, Ca, Ba

4. I A Li \(1s^2 2s^1 \)
 I I A Be \(1s^2 2s^2 \)
 I I I A B \(1s^2 2s^2 2p^1 \)
 I V A C \(1s^2 2s^2 2p^2 \)
 V A N \(1s^2 2s^2 2p^3 \)
 V I A O \(1s^2 2s^2 2p^4 \)
 V I I A F \(1s^2 2s^2 2p^5 \)